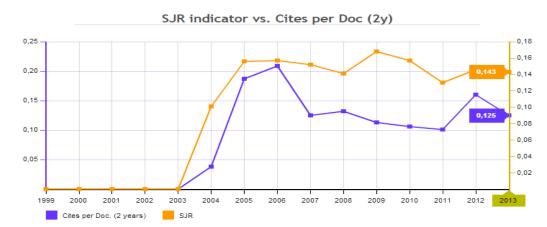


EST MODUS IN REBUS

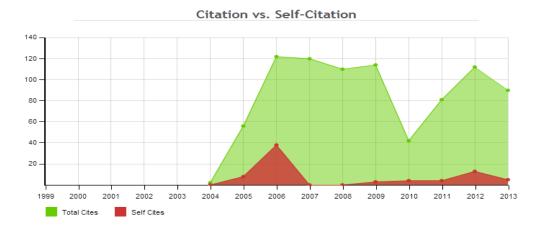
Horatio (Satire 1 1 106)

Just copy the code below and paste within your html page:
><a href="http://www.scimagojr.co

Related product



SJR is developed by:



How to cite this website?

The SJR indicator measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is. Cites per Doc. (2y) measures the scientific impact of an average article published in the journal, it is computed using the same formula that journal impact factor ™ (Thomson Reuters).

Evolution of the total number of citations and journal's self-citations received by a journal's published documents during the three previous years.

Processing and Properties of Advanced Ceramics and Composites V

Edited by
Narottam P. Bansal
J. P. Singh
Song Won Ko
Ricardo H. R. Castro
Gary Pickrell
Navin Jose Manjooran
K. M. Nair
Gurpreet Singh

Processing and Properties of Advanced Ceramics and Composites V

Ceramic Transactions, Volume 240

Narottam P. Bansal J. P. Singh Song Won Ko Ricardo H. R. Castro Gary Pickrell Navin Jose Manjooran K. M. Nair Gurpreet Singh

Copyright © 2013 by The American Ceramic Society. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-118-74409-3

ISSN: 1042-1122

Printed in the United States of America.

10987654321

Contents

Preface	ix
CERAMIC MATRIX COMPOSITES	
Development of Continuous SiC Fiber Reinforced HfB ₂ -SiC Composites for Aerospace Applications Clifford J. Leslie, Emmanuel E. Boakye, Kristin A. Keller, and Michael K. Cinibulk	3
Effect of Primary Grain Size of SrZrO ₃ /ZrO ₂ Nano-Dispersed Composite Abrasive on Glass Polishing Properties Takayuki Honma, Koichi Kawahara, Seiichi Suda, and Masasuke Takata	13
Thermal Effect Studies on Flexural Strength of SiC _f /C/SiC Composites for Typical Aero Engine Application Vijay Petley, Shweta Verma, Shankar, S.N. Ashritha, S. N. Narendra Babu, and S. Ramachandra	21
Effect of Phase Architecture on the Thermal Expansion Behavior of Interpenetrating Metal/Ceramic Composites Siddhartha Roy, Pascal Albrecht, Lars Przybilla, Kay André Weidenmann, Martin Heilmaier, and Alexander Wanner	33
High Temperature Interactions in Platinum/Alumina System Ali Karbasi, Ali Hadjikhani, Rostislav Hrubiak, Andriy Durygin, and Kinzy Jones	45
Fracture Mechanics of Recycled PET-Based Composite Materials Reinforced with Zinc Particles Jessica J. Osorio-Ramos, Elizabeth Refugio- García, Víctor Cortés-Suarez, and Enrique Rocha-Rangel	55

INNOVATIVE PROCESSING

Fabrication of GaSb Optical Fibers Brian L. Scott and Gary R. Pickrell	65
Characterization and Synthesis of Samarium-Doped Ceria Solid Solutions Aliye Arabacı	71
Influence of Precursors Stoichiometry on SHS Synthesis of Ti ₃ AIC ₂ Powders L. Chlubny and J. Lis	79
Chemical Vapor Deposition and Characterization of Thick Silicon Carbide Tubes for Nuclear Applications P. Drieux, G. Chollon, A. Allemand, and S. Jacques	87
Uniform Microwave Plasma Pyrolysis for the Production of Metastable Nanomaterials Kamal Hadidi, Makhlouf Redjdal, Eric H. Jordan, Olivia A. Graeve, and Colby M. Brunet	99
Characterization of the Conductive Layer Formed During µ-Electric Discharge Machining of Non-Conductive Ceramics Nirdesh Ojha, Tim Hösel, Claas Müller, and Holger Reinecke	105
Forming Mullite-Ceramics Reinforced with ZrO ₂ -t Starting from	111
Mullite-ZrO ₂ -t and Kyanite-Al ₂ O ₃ -ZrO ₂ -t Mixtures	, , , ,
Elizabeth Refugio-García, Jessica Osorio-Ramos, José G. Miranda-Hernández, José A. Rodríguez-García, and Enrique Rocha-Rangel	
Impact of Nanoparticle-Microstructure on Cosmeceuticals UV Protection, Transparency and Good Texture Yasumasa Takao	119
Piezoelectric Thick-Film Structures for High-Frequency Applications Prepared by Electrophoretic Deposition Danjela Kuscer, Andre-Pierre Abelard, Marija Kosec, and Franck Levassort	131
Low Temperature Growth of Oxide Thin Films by Photo-Induced Chemical Solution Deposition Tetsuo Tsuchiya, Tomohiko Nakajima, and Kentaro Shinoda	143
retsdo reachiya, romoniko nakajima, and nemaro omnoda	

FORMING MULLITE-CERAMICS REINFORCED WITH ZrO₂-t STARTING FROM MULLITE-ZrO₂-t AND KYANITE-Al₂O₃-ZrO₂-t MIXTURES

Elizabeth Refugio-García, Jessica Osorio-Ramos Departamento de Materiales, Universidad Autónoma Metropolitana Av. San Pablo # 180, Col Reynosa-Tamaulipas, México, D. F., 02200

José G. Miranda-Hernández Universidad Autónoma del Estado de México (UAEM-Valle de México), IIN, Blvd. Universitario S/N, Predio San Javier, Atizapán de Zaragoza, México, 54500

José A. Rodríguez-García, Enrique Rocha-Rangel Universidad Politécnica de Victoria, Avenida Nuevas Tecnologías 5902 Parque Científico y Tecnológico de Tamaulipas, Tamaulipas, México, 87138

ABSTRACT

Mullite-ceramics reinforced with 8 and 10 vol. % YZT were prepared starting from two different powder mixtures. The first one was a mixture of pure mullite and YZT, and the other was a mixture of kyanite, alumina and YZT. The production of ceramics consisted of the pressureless-sintering of mixtures powders which were thoroughly mixed under high energy ball-milling. During sintering, kyanite and alumina of the second mixture react between them to form mullite. Measurements of density, microhardness and K_{IC} were carry out in all produced materials, from it was obtained that samples produced with pure mullite reach major densities, microhardness and toughness in comparison with the values displayed for samples prepared with kyanite and alumina. The reason of this has its explanation since during sintering of the kyanite and alumina samples; there is a competition between two phenomena; the reaction to form mullite and the sintering of the product. As the reaction occurs at low temperature and has high energy consumption, the activation energy necessary for diffusion during sintering is not reached; therefore this phenomenon is the controlling agent during the processing.

INTRODUCTION

Besides its traditional uses, mullite has attracted attention in recent years, as a material for high temperature structural applications, mainly because at these temperatures it may retain a significant portion of the mechanical strength that it has at room temperature, also, because it has a low thermal expansion coefficient, low dielectric constant, high melting point, high creep resistance and high chemical stability¹. Table 1 shows some of the values of the main properties of the mullite.

Table 1. Main properties of pure mullite at room temperature¹.

Property	Value
Thermal expansión coefficient	5X10 ⁻⁶ K ⁻¹
Flexural resistance	200 MPa
Fracture toghness (K _{IC})	2 MPam ^{1/2}
Young modulus	231 MPa
Density	3.16 gcm ⁻³

As can be seen in this table, fracture toughness (K_{IC}) is a characteristic in which mullite is deficient. Furthermore, to obtain dense bodies of mullite, it is required long sintering treatment at elevated temperatures (>1700 °C)², this is due to the high value of the activation energy necessary for ion diffusion occurs through the network of mullite³. Because of these difficulties, over the past 15 years in many countries around the world, they were conducted a series of investigations in the seek for new processing methods by which they could obtain dense mullite bodies. To increase its tenacity, in some of these studies, it has proposed the use of ZrO_2 as reinforcing material⁴-10, thus values of K_{IC} that have been obtained, varying between 3 and 3.2 MPa·m¹-2 for 10 to 20 wt. % ZrO_2 content.

MPa·m^{1/2} for 10 to 20 wt. % ZrO₂ content.

Some researchers⁶ have mentioned that large amounts of ZrO₂ on mullite-based composites cause thickening of the microstructure and thus the difficulty in the retention of the tetragonal form of ZrO₂. This retention of the ZrO₂ is important, because it has been suggested that one method by which the mullite matrix is reinforcing by ZrO₂ is the transformation of ZrO₂-tetragonal to ZrO₂-monoclinic¹¹. However, other authors have suggested different possible reinforcement mechanisms, such as microcracking induced by the same transformation of the ZrO₂⁹⁻¹¹, strengthening grain boundaries caused by a metastable solid solution of ZrO₂¹⁰⁻¹² and deflection of cracks due to the presence of acicular microstructure¹³.

The aim of this work is to study the formation of mullite composites reinforced with ZrO_2 -t, starting from mixtures of mullite + ZrO_2 -t and Kyanite + Al_2O_3 + ZrO_2 -t, using conventional methods of sintering without the application of pressure in an electric furnace.

Because pure millita is a highly expensive mineral, it is suggest the use of kyanite as mullite precursor material. Kyanite mineral is cheaper than the mullite mineral, with chemical formula (Al₂O₃·SiO₂), this mineral when is heated at high temperatures (\sim 1300 °C) decomposes forming mullite + silica, for this reason in the mixture with kyanite is added certain amount of alumina to compensate silica excess resulting from the decomposition of kyanite in order to form more mullite.

EXPERIMENTAL PROCEDURE

Starting materials were: Mullite powder (99%, 1µm, Virginia Milling Corporation, USA), Kyanite powder (99%, 3-5 µm, Virginia Milling Corporation, USA), Al₂O₃ powder (99.9 %, 1µm, Sigma, USA) and YZT powder (99.9 %, <1 µm, Tosho, Japan). Final YZT contents in the produced composites were: 8 or 10 vol. %. Powder blends of 20 g were prepared in a ball mill with ZrO₂ media, the rotation speed of the mill was of 300 rpm, and the studied milling time was 12 h. With the milled powder mixture, green cylindrical compacts 2 cm diameter and 0.2 cm thickness were fabricated by uniaxial pressing, using 300 MPa pressure. Then pressureless sintering in an electrical furnace was performed, at 1500 °C during 2 h. Characterization of sintered samples was as follows: Densities were measured using the Archimedes' principle. The microstructure was observed by scanning electron microscopy (SEM), equipped with an energy dispersive spectroscopy analyzer (EDS). Phases present in the sintered composites were determined by X-ray diffraction (XRD). Fracture toughness was estimated by the fracture indentation method¹⁴, (in all cases ten independent measurements per value were carrying out).

To identify study samples, it was used the following code; C8Z: Sample prepared with Kyanite + Al₂O₃ + 8 % vol. ZrO₂ C10Z: Sample prepared with Kyanite + Al₂O₃ + 10 % vol. ZrO₂

M8Z: Sample prepared with Mullite + 8 % vol. ZrO₂ M10Z: Sample prepared with Mullite + 10 % vol. ZrO₂

Samples	Aperture [mm]	Depth [a] [mm]	Angle [α] [degrees]	Radius [r]
PEZI 0a	1.742	1.869	42 45	0.214
PEZI 0b	3.117	3.587	39 46	0.224
PEZI 10a	2.575	2.806	45 22	0.209
PEZI 10b	2.226	2.322	44 31	0.295
PEZI 10c	2.132	2.359	41 38	0.201
PEZI 30a	3.127	3.703	43 00	0.240
PEZI 30b	3.336	3.830	42 39	0.295
PEZI 30c	2.639	2.742	46 26	0.197

Bending test.

To apply the theoretical models of Peterson, Irwin and Griffith, it was first necessary to test the 8 specimens, previously prepared and tested in three-point bending to find that maximum force could with stand the test pieces before breaking. This test was conducted in the Instron universal machine, mod. 5500R, using a rate of 0.5 mm / min.

Thereafter, defining the encoding of the specimens based on their geometry, which corresponds to a flexure beam as shown in Figure 2⁸.

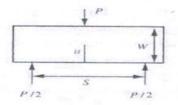


Figure 2. Geometry of a beam in bending.

Where:

W: the height of the sample [m]

P: is the applied force [N]

S: is the spam formed between the support

[m]

a: is the depth of the crack [m]

Besides using other values are also useful.

B: thickness of the sample [m]

r: the radius [m]

d = W - a [m]

Thus using this coding will be able to obtain other parameters in order to find the value of K_{IC}.

Using the model of Peterson it is possible to get K_{tn} , σ_{max} and σ_{nom} ,

Where:

Ktn: The factor of elastic stress concentration

 σ_{max} : The effort at the root hub of efforts

σ_{nom}: The nominal stress

In the concentration stress charts developed by Peterson 9 it can be found the value of K_{tn} , relating r with d and W with d. However, also it can be obtained applying the equations of the curves and formulas mentioned below 9 .

$$K_{tn} = C_1 + C_2(a/W) + C_3(a/W)^2 + C_4(a/W)^3$$
 -----(1)

In the case where 2.0 < a/r < 20, the following equations are applied.

ray diffraction patterns do not indicate complete reaction, since there are several peaks correspond to Al_2O_3 and SiO_2 in both cases, however these peaks are very low in intensity, therefore reaction is almost complete. The most important observation here is the presence of ZrO_2 in its monoclinc form, and this situation could be a problem, because the reinforcement by transformation of zirconia would not operate in this situation.

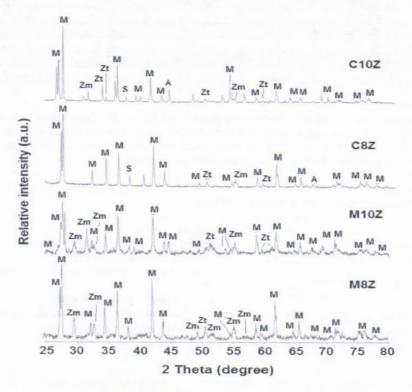


Figure 3. X-ray diffraction patterns of different prepared composites.

M-mullite, S-silica, A-alumina, Zt-tetragonal- ZrO₂, Zm-monoclinic- ZrO₂.

Microhardness

The microhardness evaluated in different prepared samples is reported in Figure 4. In this figure it is seen that those samples prepared with mullite + ZrO₂-t exhibit higher hardness values, compared to the samples prepared with the mixture of kyanite + Al₂O₃. The greater degree of densification and the situation of has a more homogeneous material in chemical composition in samples prepared with ZrO₂ and mullite, are the cause responsible for this condition. Since materials made from kyanite besides being less dense, have a more heterogeneous chemical composition, as have been indicated by XRD results, where phases such as mullite, monoclinic and tetragonal ZrO₂, Al₂O₃ and SiO₂ are present.

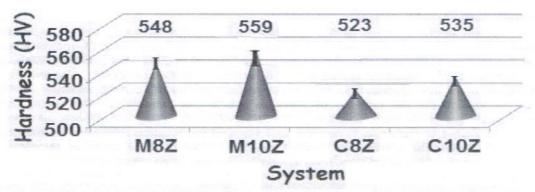


Figure 4. Hardness of samples sintered at 1500°C, during 2 h.

Fracture toughness

Figure 5 shows the values of fracture toughness determined in different samples prepared here. As expected samples prepared with mullite + ZrO2-t exhibit larger values of fracture toughness because therein ZrO2 is present in tetragonal form, giving the feasibility of the reinforcement by the transformation of ZrO₂-t to ZrO₂-m exist. On the contrary, the fracture toughness is less in the samples prepared with kyanite + Al₂O₃ + ZrO₂-t, because it was not possible the ZrO2-t retention at the end of processing. The reason of these behaviors have its explanation since during sintering of the kyanite and alumina samples; there is a competition between two phenomena; the reaction to form mullite and the sintering of the product. As the reaction occurs at low temperature and has high energy consumption, the activation energy necessary for ion diffusion through the network of mullite during sintering is not reached; as a result this phenomenon is the controlling agent during the processing.

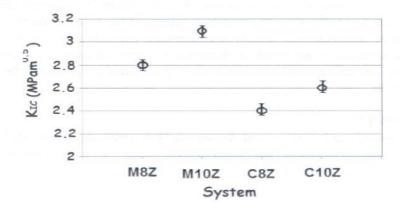


Figure 5. Fracture toughness of samples sintered at 1500°C, during 2 h.

Microstructure

Typical microstructures of the samples prepared with 10% vol. ZrO₂-t are shown in Figure 6. Figure 6a which corresponds to sample prepared with mullite + ZrO₂-t, clearly shows a good distribution of fine particles of a second phase (ZrO₂-t) in the matrix (mullite). While figure 6b corresponds to a sample prepared with the kyanite + Al₂O₃ and ZrO₂-t mixture, the ZrO₂ distribution is not homogeneous because it is appreciate colony of ZrO₂ agglomerates. ZrO₂ was added to mullite for the purpose of serve as reinforcing material of the same, situation unsuccessful, due to the transformation of ZrO₂-t to ZrO₂-m during any processing stage. The size of the ZrO₂-t in figure 6a is about 1 to 3 μm and the location thereof is in intergranular regions of the mullite matrix. The reinforcing mechanism in these kinds of samples is the transformation of ZrO₂-t to ZrO₂-m, mechanisms before widely documented^{2,4,6,7,8,11}.

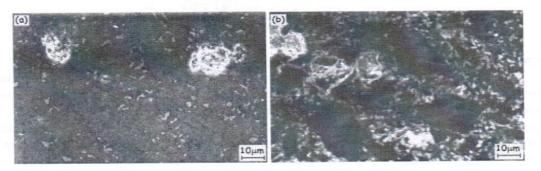


Figure 6. Microstructure observed in scanning electron microscope of samples sintered at 1500°C, during 2 h. (a) mullite + ZrO₂-t, (b) kyanite + Al₂O₃ + ZrO₂-t.

CONCLUSIONS

Samples produced with pure mullie reach major values of density, microhardness and toughness. During sintering of kyanite-alumina mixtures; there is a competition between two phenomena; the reaction to form mullite and the sintering of the product. As the reaction occurs at low temperature and has high energy consumption, the activation energy necessary for diffusion during sintering is not reached; therefore this phenomenon is the controlling agent during the processing. The reinforcing mechanism in these kinds of samples is the transformation of ZrO₂-t to ZrO₂-m.

ACKNOWLEDGMENT

Authors would thank Universidad Autónoma Metropolitana, Universidad Autónoma del Estado de México and Universidad Politécnica de Victoria for the financial and technical support given for the realization of this work.

REFERENCES

¹ Mullite Processing, Structure and Properties, Topical Issue, J. Am. Ceram. Soc., 74, (1991).

² P. Boch and J. P. Giry, Preparation and Properties of Reaction-Sintered Mullite-ZrO2 Ceramics, *Mater. Sci and Eng.*, **71**, 39-48 (1985).

- ³ M. D. Sacks and J. A. Pask, Sintering of Mullite-Containing Materials: Y Effect of Composition, *J. Am. Ceram. Soc.* 65, 65-70 (1982).
- ⁴ J. S. Moya and M. I. Osendi, Effect of ZrO2 (ss) in Mullite on The Sintering and Mechanical Properties of Mullite/ZrO2 Composites, *J. Mater. Sci. Lett.*, **2**, 599-601 (1983).
- ⁵ T. Koyama, S. Hayashi, A.Yasumori and K.Okada, Preparation and Characterization of Mullite-Zirconia Composites from Various Starting Materials, *J. Eur. Ceram. Soc.*, **14**, 295-302, (1994).
- ⁶ J. S. Moya and M. I. Osendi, Microstructure and Mechanical Properties of Mullite-Zirconia Composites, *J. Mater. Sci.* **19**, 2909-2914 (1984).
- ⁷ T. Koyama, S. Hayashi, A. Yasumori and K. Okada, Contibution of Microstructure to The Toughness of Mullite/Zirconia Composites, *Ceram. Trans.* **51**, 695-700 (1995).
- ⁸ A. Leriche, Mechanical Properties and Microstructure of Mullite-Zirconia Composites, *Ceram.Trans. 6, Mullite and Mullite Matrix Composites*, ed. by S. Somiya, R. F. Davis and J. A. Pask, 541-552 (1991).
- ⁹ P. Descamps, S. Sakaguchi, M. Poorteman and F. Cambier, High-Temperature Characterization of Reaction Sintered Mullite-Zirconia Composites, *J. Am. Ceram. Soc.*, **74**, 2476-2481 (1991).
- ¹⁰ T. Koyama, S. Hayashi, A. Yasumori and K. Okada, Microstructure and Properties of Mullite/Zirconia Composites Prepared form Alumina and Zircon Under Various Fairing Conditions, J. Eur. Ceram. Soc., 16, 231-237 (1996).
- ¹¹ J. S. Wallace, G. Petzow and N. Claussen, Microstructure and Property Development of In Situ Reacted Mullite-ZrO2 Composites, *Advanced Ceramics*, **12** *Science and technology of Zirconia*, ed. by N. Claussen, M. Ruhle and H. Heur, 436-442 (1984).
- ¹² G. Orange and G. Fantozzi, High Temperature Mechanical Properties of Reaction Sintered Mullite-Zirconia and Mullite-Alumina-Zirconia Composites, J. Mater. Sci., 20, 2533-2540 (1985).
- ¹³ K. Srikrishna, G. Thomas and J. S. Moya, Sintering additives for Mullite/Zirconia Composites, *Advances in ceramics* **24** *Science and Technology of Zirconia III.* Ed. by S. Somiya, N. Yamamoto and H. Yanagida, 276-286 (1988).
- ¹⁴ A. G. Evans and E. A. Charles, Fracture Toughness Determination by Indentation, *J. Am. Ceram. Soc.*, 59, 371-372 (1976).